Lowest $\mathfrak {sl}(2)$-types in $\mathfrak {sl}(n)$-representations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biological implications of $\mathfrak{so}(2,1)$ symmetry in exact solutions for a self-repressing gene

We chemically characterize the symmetries underlying the exact solutions of a stochastic negatively self-regulating gene. The breaking of symmetry at low molecular number causes three effects. Average protein number differs from the deterministically expected value. Bimodal probability distributions appear as the protein number becomes a readout of the ON/OFF state of the gene. Two branches of ...

متن کامل

On weakly $mathfrak{F}_{s}$-quasinormal subgroups of finite groups

Let $mathfrak{F}$ be a formation and $G$ a finite group. A subgroup $H$ of $G$ is said to be weakly $mathfrak{F}_{s}$-quasinormal in $G$ if $G$ has an $S$-quasinormal subgroup $T$ such that $HT$ is $S$-quasinormal in $G$ and $(Hcap T)H_{G}/H_{G}leq Z_{mathfrak{F}}(G/H_{G})$, where $Z_{mathfrak{F}}(G/H_{G})$ denotes the $mathfrak{F}$-hypercenter of $G/H_{G}$. In this paper, we study the structur...

متن کامل

On Minuscule Representations and the Principal Sl2

We study the restriction of minuscule representations to the principal SL2, and use this theory to identify an interesting test case for the Langlands philosophy of liftings. In this paper, we review the theory of minuscule co-weights λ for a simple adjoint group G over C, as presented by Deligne [D]. We then decompose the associated irreducible representation Vλ of the dual group Ĝ, when restr...

متن کامل

Plethysm and fast matrix multiplication

Motivated by the symmetric version of matrix multiplication we study the plethysm $S^k(\mathfrak{sl}_n)$ of the adjoint representation $\mathfrak{sl}_n$ of the Lie group $SL_n$. In particular, we describe the decomposition of this representation into irreducible components for $k=3$, and find highest weight vectors for all irreducible components. Relations to fast matrix multiplication, in part...

متن کامل

A Howe-type correspondence for the dual pair (sl2, sln) in sl2n

In this article, we study the decomposition of weight–sl2n–modules of degree 1 to a dual pair (sl2, sln). We show that in some generic cases we have an explicit branching rule leading to a Howe–type correspondence between simple highest weight modules. We also give a Howe–type correspondence in the non–generic case. This latter involves some (non simple) Verma modules. Let g denote a reductive ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Representation Theory of the American Mathematical Society

سال: 2017

ISSN: 1088-4165

DOI: 10.1090/ert/492